WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mtadd(x,cons(t,ts)) -> cons(tadd(x,t),mtadd(x,ts)) mtadd(x,nil()) -> nil() tadd(x,leaf()) -> leaf() tadd(x,node(y,ts)) -> node(add(x,y),mtadd(x,ts)) - Signature: {add/2,mtadd/2,tadd/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {add,mtadd,tadd} and constructors {0,cons,leaf,nil,node,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add#(0(),y) -> c_1() add#(s(x),y) -> c_2(add#(x,y)) mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) mtadd#(x,nil()) -> c_4() tadd#(x,leaf()) -> c_5() tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: add#(0(),y) -> c_1() add#(s(x),y) -> c_2(add#(x,y)) mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) mtadd#(x,nil()) -> c_4() tadd#(x,leaf()) -> c_5() tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mtadd(x,cons(t,ts)) -> cons(tadd(x,t),mtadd(x,ts)) mtadd(x,nil()) -> nil() tadd(x,leaf()) -> leaf() tadd(x,node(y,ts)) -> node(add(x,y),mtadd(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5} by application of Pre({1,4,5}) = {2,3,6}. Here rules are labelled as follows: 1: add#(0(),y) -> c_1() 2: add#(s(x),y) -> c_2(add#(x,y)) 3: mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) 4: mtadd#(x,nil()) -> c_4() 5: tadd#(x,leaf()) -> c_5() 6: tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) - Weak DPs: add#(0(),y) -> c_1() mtadd#(x,nil()) -> c_4() tadd#(x,leaf()) -> c_5() - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mtadd(x,cons(t,ts)) -> cons(tadd(x,t),mtadd(x,ts)) mtadd(x,nil()) -> nil() tadd(x,leaf()) -> leaf() tadd(x,node(y,ts)) -> node(add(x,y),mtadd(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add#(s(x),y) -> c_2(add#(x,y)) -->_1 add#(0(),y) -> c_1():4 -->_1 add#(s(x),y) -> c_2(add#(x,y)):1 2:S:mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) -->_1 tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)):3 -->_1 tadd#(x,leaf()) -> c_5():6 -->_2 mtadd#(x,nil()) -> c_4():5 -->_2 mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)):2 3:S:tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) -->_2 mtadd#(x,nil()) -> c_4():5 -->_1 add#(0(),y) -> c_1():4 -->_2 mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)):2 -->_1 add#(s(x),y) -> c_2(add#(x,y)):1 4:W:add#(0(),y) -> c_1() 5:W:mtadd#(x,nil()) -> c_4() 6:W:tadd#(x,leaf()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: tadd#(x,leaf()) -> c_5() 5: mtadd#(x,nil()) -> c_4() 4: add#(0(),y) -> c_1() * Step 4: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mtadd(x,cons(t,ts)) -> cons(tadd(x,t),mtadd(x,ts)) mtadd(x,nil()) -> nil() tadd(x,leaf()) -> leaf() tadd(x,node(y,ts)) -> node(add(x,y),mtadd(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add#(s(x),y) -> c_2(add#(x,y)) mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) * Step 5: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) and a lower component add#(s(x),y) -> c_2(add#(x,y)) Further, following extension rules are added to the lower component. mtadd#(x,cons(t,ts)) -> mtadd#(x,ts) mtadd#(x,cons(t,ts)) -> tadd#(x,t) tadd#(x,node(y,ts)) -> add#(x,y) tadd#(x,node(y,ts)) -> mtadd#(x,ts) ** Step 5.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) -->_1 tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)):2 -->_2 mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)):1 2:S:tadd#(x,node(y,ts)) -> c_6(add#(x,y),mtadd#(x,ts)) -->_2 mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: tadd#(x,node(y,ts)) -> c_6(mtadd#(x,ts)) ** Step 5.a:2: Ara WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) tadd#(x,node(y,ts)) -> c_6(mtadd#(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1} + Details: Signatures used: ---------------- cons :: ["A"(8) x "A"(8)] -(8)-> "A"(8) node :: ["A"(0) x "A"(8)] -(0)-> "A"(8) mtadd# :: ["A"(0) x "A"(8)] -(0)-> "A"(0) tadd# :: ["A"(0) x "A"(8)] -(0)-> "A"(0) c_3 :: ["A"(0) x "A"(0)] -(0)-> "A"(0) c_6 :: ["A"(0)] -(0)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1) "c_6_A" :: ["A"(0)] -(0)-> "A"(1) "cons_A" :: ["A"(1) x "A"(1)] -(1)-> "A"(1) "node_A" :: ["A"(0) x "A"(1)] -(0)-> "A"(1) Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) 2. Weak: tadd#(x,node(y,ts)) -> c_6(mtadd#(x,ts)) ** Step 5.a:3: Ara WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: tadd#(x,node(y,ts)) -> c_6(mtadd#(x,ts)) - Weak DPs: mtadd#(x,cons(t,ts)) -> c_3(tadd#(x,t),mtadd#(x,ts)) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1} + Details: Signatures used: ---------------- cons :: ["A"(14) x "A"(14)] -(14)-> "A"(14) node :: ["A"(0) x "A"(14)] -(14)-> "A"(14) mtadd# :: ["A"(0) x "A"(14)] -(0)-> "A"(14) tadd# :: ["A"(0) x "A"(14)] -(8)-> "A"(0) c_3 :: ["A"(0) x "A"(0)] -(0)-> "A"(14) c_6 :: ["A"(0)] -(0)-> "A"(10) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1) "c_6_A" :: ["A"(0)] -(0)-> "A"(1) "cons_A" :: ["A"(1) x "A"(1)] -(1)-> "A"(1) "node_A" :: ["A"(0) x "A"(1)] -(1)-> "A"(1) Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: tadd#(x,node(y,ts)) -> c_6(mtadd#(x,ts)) 2. Weak: ** Step 5.b:1: Ara WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak DPs: mtadd#(x,cons(t,ts)) -> mtadd#(x,ts) mtadd#(x,cons(t,ts)) -> tadd#(x,t) tadd#(x,node(y,ts)) -> add#(x,y) tadd#(x,node(y,ts)) -> mtadd#(x,ts) - Signature: {add/2,mtadd/2,tadd/2,add#/2,mtadd#/2,tadd#/2} / {0/0,cons/2,leaf/0,nil/0,node/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mtadd#,tadd#} and constructors {0,cons,leaf,nil,node ,s} + Applied Processor: Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1} + Details: Signatures used: ---------------- cons :: ["A"(0) x "A"(0)] -(0)-> "A"(0) node :: ["A"(0) x "A"(0)] -(0)-> "A"(0) s :: ["A"(1)] -(1)-> "A"(1) add# :: ["A"(1) x "A"(0)] -(0)-> "A"(0) mtadd# :: ["A"(1) x "A"(0)] -(0)-> "A"(0) tadd# :: ["A"(1) x "A"(0)] -(0)-> "A"(0) c_2 :: ["A"(0)] -(0)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: add#(s(x),y) -> c_2(add#(x,y)) 2. Weak: WORST_CASE(?,O(n^2))